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In much of the available literature, there is confusion regarding the correct use of the terms surface 
tension, surface energy and surface free energy. As a result, these three terms have been used 
interchangeably to describe the same quantity. This problem is particularly serious in the area of 
solid surface science. Linford has examined and discussed such inconsistencies but failed to 
differentiate the three quantities clearly. In the present paper, the definitions and the relationships 
between surface tension, surface energy and surface free energy are examined and their proper 
usage clarified. 

1 .  I n t r o d u c t i o n  

Capillarity, the terminology referring to the rise of 
a liquid in a tube of small diameter, has been studied 
from as far back as the time of Leonardo da Vinci 
(1452-1519). In the 1700s, Newton realized that the 
rise in liquid level can be attributed to intermolecular 
forces acting on the liquid within the tube. He called 
the driving forces the force of adhesion and cohesion. 
Later in the middle of the 18th century, Von Segner 
proposed the first theory on capillarity. Yon Segner 
was also the first to use the term "surface tension" and 
the notion of a "contractile skin" on liquid surfaces, 
which are now an integral part of surface science [1]. 
In 1805, the fundamental theory on capillarity, which 
relates the cohesive forces in the liquid to the shape of 
the liquid surface, was independently published by 
both Young [2] and Laplace [3]. Their theory is now 
the basis for the majority of techniques used in surface 
tension studies. Since the work of Young and Laplace, 
some confusion has arisen regarding the proper use of 
the terms, surface tension, surface energy and surface 
free energy. In the area of solid surface science, these 
three quantities have been used synonymously in nu- 
merous articles. Although Linford [4] has examined 
and discussed the inconsistencies in the terminology, 
he failed to differentiate the three quantities clearly. 

2. Surface curvature and surface tension 
The fundamental relationship developed by Young 
and Laplace, better known as the Laplace equation, 
relates the surface curvature of a liquid to the surface 
tension. Their derivation is given below in a simplified 
format [5]. 

As shown in Fig. 1, consider a point P on a curved 
liquid surface. Using P as the centre, draw a circle on 
the surface whose radius is p. As a result, a liquid cap 
bounded by the circle is isolated. To derive the La- 
place equation, the mechanical equilibrium on this 
isolated element is considered as p tends towards zero. 
Construct any set of orthogonal lines AB and CD 
through point P. The radii of curvature of these two 
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lines are rl and r2. The length of the path along the 
liquid surface from P to any of A, B, C or D can be 
approximated by 9, because p is very small. At point 
A on the circular boundary of the cap, a small element, 
6l, experiences a surface tension force of `/81. Because 
qb is a small angle as 9 approaches zero, the compon- 
ent of this force along the line PN is 

,/81 sin qb = 7008l 

9 
= -~ - -  81 (1 )  

r l  

If all four elements A, B, C,�9 and D are considered, the 
combined force along PN is 

`/8l 2p + = 2p`/8l + (2) 

by Euler's theorem [5] 

1 1 1 1 
- -  + - + (3 )  
rl r2 R1 R2 

where Rt and R2 refer to the principal radii of curva- 
ture. As a result of Equation 3, the validity of Equa- 
tion 2 is independent of the choice of AB and CD. To 
calculate the surface tension force contribution for the 
entire cap, Equation 2 is integrated with respect to 81 
�9 along the circumference of the cap. Because four ele- 
ments are considered in Equation 2, the integration 
required should be one-quarter of a resolution around 
the circumference. The result yields 

('gP/2297 /1__ R~) ( l ~  ~1) Jo t,R, + 81 = n0'`/ + 14t 

To keep this isolated surface element in mechanical 
equilibrium, the surface tension force as shown in 
Equation 4 must be balanced by the hydrostatic force 
(pressure times area) exerted on the surface. Therefore 

(P2 - Pl)~:P 2 = ~:P `/ + ~ (5) 

where Pl and PE refer to the pressures within and 
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Figure 1 I so la ted  l iquid  surface for equ i l ib r ium analysis.  

without the liquid surface. With Ap = P2 - -  Pl, Equa- 
tion 5 immediately reduces to Equation 6 which is the 
well-known Laplace equation 

Ap = y + (6) 

From mechanical consideration, Equation 6 provides 
the first correct definition of sur face  tension.  As will be 
discussed in the following sections, surface free energy 
is defined thermodynamically. 

3. Thermodynamics of surfaces 
and interfaces 

In a physical system when two fluids, for example 
a solution and a gas, come into contact, there exist 
three separate regions whose properties are distinc- 
tively different from each other. Namely, they are the 
homogeneous gas and solution phases and the inter- 
face which separates them. The composition of the 
interface is generally different from that of the two 
bulk phases. Another characteristic of the interface is 
the variation of concentration of any particular spe- 
cies across the thickness of the interface. In 1805, 
Young 1-2] concluded that it is mechanically correct to 
represent the interface of finite thickness as a mem- 
brane-like surface and attributed all the forces exerted 
on the interface to this sur face  o f  tension.  In a similar 
manner, Gibbs [6] also replaced the three-dimen- 
sional interface with a two-dimensional surface in his 
thermodynamic treatment of the interface. Thus in 
Gibbs' model, all the thermodynamic properties asso- 
ciated with the three-dimensional interface become 
properties of the two-dimensional surface. 

To understand the implication of Gibbs' model, 
assume that the real system contains n~ mole of com- 
ponent i. In order to make the real and the model 
system equivalent, a mass must be assigned to the 

model surface so that 

1 s 
ni = n g + ni + ni (7) 

where the superscripts g, 1, and s refer to the gas, 
liquid and surface phase, respectively. By rearranging 
Equation 7, the number of moles of i adsorbed at the 
surface or the molar surface excess is defined as 

n~ = n i - n ~ - n l  (8) 

In Gibbs' model, all the thermodynamic quantities 
associated with the surface or interface are considered 
to be excess quantities with respect to the two bulk 
phases. 

Analogous to Equation 8, thermodynamic quantit- 
ies such as the internal energy of the surface, U s, may 
be expressed as 

U s = g -  U g - -  U 1 (9) 

with U representing the total internal energy of the 
system. 

Because the Helmholtz free energy of the system, F, 
is defined as 

F = U - - T S  

= F g + F ~ + F s (10) 

the Helmholtz free energy of the surface, F s, is ex- 
pressed by 

F s = U s -  T S  ~ (11) 

where T, S, S s refer to temperature, entropy and sur- 
face entropy of the system, respectively. 

4. Surface tension and surface free 
energy 

To relate surface tension to thermodynamic properties 
of the system, the dividing surface selected for thermo- 
dynamic consideration must coincide with the surface 
of tension which is defined in the mechanical treat- 
ment of the system. Thus, the validity of the relation- 
ships to be developed in this section relies on the 
satisfaction of this criterion. 

In a capillary system, mechanical work, d W, done 
on the system can either be in the form of a volume 
change, d V, in the two bulk phases or a change in the 
area, dA, of the interface, that is 

d W  = - p d V  + T d A  (12) 

If dQ is the reversible heat received by the system, the 
first law of thermodynamics states that 

dU = dQ + dW (13) 

which gives 

d Q  = d U  + p d V -  ydA (14) 

In a system where heat is also generated through 
chemical means, Equation 13 becomes 

where 

dU = dQ + dQ' + dW (15) 

dO'  = ~ g i d n l  (16) 
i 

l-ti and nz refer to the chemical potential and number of 
mole of the ith species, respectively. Differentiating 
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Equation 10 gives 

dE = d U -  T d S -  S d T  (17) 

The definition of the entropy change, dS, for heat 
received from the surroundings through a reversible 
process is 

dQ 
dS - (18) 

T 

where Tis the temperature. If Equations 14~16 and 18 
are combined together with the elimination of dQ and 
dQ', Equation 19 is obtained 

dU = T d S -  p d V  + ydA + ~p~dn~ (19) 
i 

Substituting Equation 19 into Equation 17, the ex- 
pression for the Helmholtz free energy becomes 

dF = - S d T -  p d V  + ydA + ~g~dni (20) 
i 

The relationship between surface tension and the 
Helmholtz free energy is obtained by keeping the 
temperature, T, volume, V, and molecular number, n~, 
constant. This is shown in Equation 21 

Furthermore, because only the internal energy of the 
system, U, and surface, uS, and entropy of the system, 
S, and surface, S s, in the system are functions of the 
interfacial area, then 

= = 7 (22) 
\~A/r , .  ~ r,v,. 

By definition, F '  is an excess quantity with respect to 
the bulk phases, therefore, from Equation 22 surface 
tension is also an excess quantity. Equation 22 is 
considered to be the thermodynamic definition of sur- 
face tension. 

To express surface tension in terms of Gibbs free 
energy, the total differential (Equation 23) is taken 

dG = dU - T d S -  S d T  + p d V  + Vdp (23) 

Substituting Equation 19 into Equation 23 gives 

dG = - S d T  + Vdp + 3'dA + ~g~dn~ (24) 
i 

From Equation 24, the definition of surface tension in 
terms of Gibbs free energy at constant temperature, 
pressure and molecular number is 

= ~, (25) 
T ,  p ,  n 

In a manner similar to the derivation of Equation 22, 
Equation 25 becomes 

= = 'y (26) 
\ O A J r , ,  ~ r , , , ,  

In the past, there had been much misunderstanding 
and misuse of the terms surface tension, surface energy 
and surface free energy in the literature. The miscon- 
ception arises partly from the lack of standardization 
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of nomenclature which results in the interchanging use 
of these three terms to identify the same quantity. 
Also, Equations 22 and 26 have been misinterpreted to 
mean that the surface tension, 7, is equal to the surface 
free energy per unit area or surface free energy. Such 
misinterpretation, as given in the books by Swalin [-7] 
(corrected in the second edition (1972)) and Hiemenz 
[8], is rather unfortunate, because when Gibbs first 
developed his thermodynamic theory on surfaces, he 
showed that the surface tension cannot be equal to the 
surface free energy unless the adsorption at the 
surface is zero I-6]. This is shown mathematically in 
Equation 28. The term f~ is referred to as the surface 

free energy or the Helmholtz surface free energy per 
unit area and the definition of F~, the surface excess of 
species i, is given in Equation 29. Equation 28 is 
derived from Equation 27 which is an analogous form 
of Equation 20. According to Gibbs' model, the sur- 
face phase does not have an associated volume, there- 
fore, the term involving volume in Equation 20 is not 
applicable and thus is not shown in Equation 27. The 
superscript s associated with the quantities shown in 
Equation 27 signifies that they are surface quantities. 
To obtain Equation 28 from Equation 27, the surface 
free energy involved in a surface area change (from an 
initial state of zero to a final state of A) is calculated by 
keeping the intensive properties T and g7 of the 
surface constant. This is equivalent to integrating 
Equation 27 at constant Tand  ~tT. Thus the S~dTterm 
drops out from the equation. 

dF ~ - SSdT + ydA + ~g~dn~ (27) 
i 

where 

and 

y = i f - -  ~FiJ-t~ (28) 
i 

n~ 
Fi - (29) 

A 

f s 

f s  = _ (30) 
A 

At first glance, it may seem improper to keep la~ con- 
stant during the integration of Equation 27 because 
g~ is a function of n~. As a consequence, the generality 
of Equation 28 appears restricted. However, if the 
constant p.~ constraint is examined closely, it becomes 
clear that even though the number of n~ increases as 
the area of the surface increases, the molecular fraction 
of i remains constant because the moles of the other 
species present at the surface must also increase pro- 
portionally. Because g~ is actually a function of the 
molecular fraction of i, keeping g~ constant during 
the integration does not limit the generality of 
Equation 28. Also, at equilibrium, the chemical poten- 
tials of the different components in the various phases 
within the system are equal to each other. As a result, 
Ix7 remains constant regardless of any change to the 
area of the surface. This further illustrates that the 
integration of Equation 27 at constant g~ is valid 
physically. In some of the literature encountered, the 
derivation of Equation 28 was not shown in sufficient 



clarity and as a result it obscured the true meaning of 
the equation. For  example, in Adamson's [9] deriv- 
ation, he failed to clarify the validity of maintaining 
la7 constant for the integration. In the works of Delay 
and Prigogine [5] and Guggenheim [10], the deriv- 
ation procedure was not clearly illustrated, which 
makes Equation 28 difficult to comprehend. 

Osipow [11] showed incorrectly that surface ten- 
sion is equivalent to surface free energy ( f ~ =  3') by 
integrating Equation 27 at constant temperature and 
composition (for which he really meant n~). The major 
flaw in his derivation is that physically speaking, 
n7 cannot be constant. The integration of Equation 27 
corresponds to the evaluation of the surface free 
energy due to a change in the surface area with all the 
intensive quantities in the equation being constant. 
The variable n~ cannot remain constant during the 
integration because atoms or molecules must be sup- 
plied or removed from the surface in order to change 
the surface area. Fixing the number of molecules or 
atoms at the surface during an area change is analog- 
ous to the physically impossible task of increasing the 
volume of a liquid in a beaker without the addition of 
extra material to the beaker. Therefore, the proposi- 
tion of integrating Equation 27 at constant n~ is totally 
erroneous. 

From Equation 28, the surface tension of a liquid is 
clearly not equal to the surface free energy unless the 
term Y~Fzbt~ is equal to zero. This can be realized when 
either the adsorption or the chemical potentials (rela- 
tive to t h e  standard state) of all the species at the 
surface are zero. However, as will be shown below, 
these conditions can only be achieved in hypothetical 
situations. In order for the chemical potential to be 
zero, the system must only consist of a pure  liquid in 
contact with its own vapour. In such a o n e - c o m p o n e n t  

system, the activity, as, is unity. Thus, the chemical 
potential, la~ becomes zero. Nevertheless, even with the 
best vacuum equipment available, it is physically im- 
possible to remove all the air molecules within a sealed 
volume. With the air molecules always present, a one- 
component system can never be realized. Theoret- 
ically, it is possible to attain a state where the adsorp- 
tion, F~, at the dividing surface is zero. This is achieved 
by properly selecting the location of the dividing sur- 
face so that the concentrations of the adsorbed species 
are zero. However, to define the dividing surface in 
such a manner bears little significance to the real 
system. Therefore, it can be concluded that the surface 
tension and surface free energy of any system cannot 
be equal to each other in real systems. 

Another possible source of misconception between 
surface tension and surface free energy arises from 
Equation 28. As discussed in the preceding paragraph, 
in a one-component system, the surface tension and 
surface free energy are numerically equal. Researchers 
such as Adamson [9], Padday [1], Goodrich [12] and 
Ono and Kondo [13] have expanded on this fact and 
discussed the relationships between surface tension, 
surface internal energy and entropy. Consequently, for 
a o n e - c o m p o n e n t  system, the following equations 

result. 
f~ = 3' (31) 

f s  = y = u s _  Ts  s (32) 

where u ~ and s s refer to the sur face  energy  and sur face  

e n t r o p y  respectively [13-1. Because 

d7 
- s ~ ( 3 3 )  

d T  

thus 
cD 

u s = 3 ' -  : r - - '  ( 34 )  
dT 

The misunderstanding of such discussion arises when 
the above four equations are applied to multi- 
component systems. Therefore, it is very important to 
emphasize again that Equations 31-34 are valid for 
o n e - c o m p o n e n t  systems only. 

5. Conclusions 
1. The mechanical definition of surface tension is 

given by the Laplace equation 

Ap = 3' + 

2. Thermodynamically, surface tension is an excess 
quantity which can be defined by 

~ A / r , .  = ~ r,v,.  

=3'  

3. Surface energy and surface free energy are de- 
fined, respectively, as 

U s 
U s ~ - -  

A 

F s 
f s  _ 

A 

4. In general, surface free energy is not numerically 
equivalent to the surface tension, as illustrated by 
Gibbs in the following equation 

3' = f s _  ~Fd.t~ 
i 

5. Only in a one-component system (e.g. a pure 
liquid in contact with its own vapour), is the surface 
tension numerically equivalent to the surface free 
energy. 
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